

Rotating magnetic quadrupole RMF current drive for FRCs

Richard Milroy, Houyang Guo, and the RPPL Team

Redmond Plasma Physics Laboratory
University of Washington

Outline

- Introduction:
 - What is Quadrupole RMF current drive?
- Why attempt quadrupole RMF current drive?
- Numerical Predictions
- Experimental observations
 - Comparable drive capability
 - More prone to n=2 instabilities
 - Large internal oscillations for some parameters
- Summary

Quadrupole vs. dipole

- Quadrupole field does not penetrate to r = 0 ($B_r \alpha r$).
 - Not a problem since RMF is usually confined to the FRC edge.
- Coil separation of ½ angle α = π/12 → n=6 mode is zeroed (optimum angle)
- The rotation rate of the RMF field, $\omega_{rot} \propto 1/2 \omega_{rmf}$

Vacuum Quadrupole Field

Simple quadruple coil set

Quadrupole coil set: $\alpha = \pi/12$

Potential advantage to quadrupole

- Symmetric radial and azimuthal force on plasma
- Quadrupoles are known to stabilize n=2 rotational modes, and should be effective at centering the plasma
- For a constant uniform resistivity, numerical calculations predict slightly better current drive for quadrupoles.
- Reduce turbulence and lower resistivity?

MHD Model

$$\frac{\partial n}{\partial t} + \nabla \bullet n\mathbf{u} = 0$$

$$Mn \left[\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \bullet \nabla \mathbf{u} \right] = \frac{\mathbf{J} \times \mathbf{B}}{c} - \nabla P - \nabla \bullet \Pi$$

$$\frac{\partial \mathbf{A}}{\partial t} = \mathbf{u} \times \mathbf{B} - \eta c^{2} \left(\frac{\mathbf{J}}{c} \right) - \frac{c}{en} \left[\left(\frac{\mathbf{J}}{c} \times \mathbf{B} \right) - \nabla P_{e} \right]$$

$$\frac{\partial S}{\partial t} + \nabla \bullet S\mathbf{u} = \frac{\gamma - 1}{n^{\gamma - 1}} \left[\eta \mathbf{J}^{2} + \nabla \cdot (k_{\perp} \nabla T) - \Pi : \nabla \mathbf{u} - R \right]$$

$$S = n^{2-\gamma}T$$

$$P = nk_BT$$

$$\mathbf{B} = \nabla \times \mathbf{A}$$

$$\mathbf{J} = \frac{c}{4\pi} \nabla \times \mathbf{B}$$

$$\Pi = -\frac{\mu}{2\pi} \nabla \mathbf{u}$$

- Equations are solved numerically in the r-θ plane.
- To study FRC sustainment, two axial effects must be included:
 - 1. Average β condition: $\langle \beta \rangle = 1 \frac{1}{2}x_s^2$
 - 2. Equalization of temperature and density (pressure) between inner and outer field lines (including effects of rotation).

Numerical Predictions

- Numerical simulations using RMF2 (a 2D (r- θ) Hall MHD code).
- Parameters similar to experimental parameters.
 - Uniform resistivity (η = 100 μΩ-m)
 - $T_{total} = 30 \text{ eV}$, Vacuum $B_{RMF}(r = r_{wall}) = 3.5 \text{ mT}$
 - $f_{RMF} = 105 \text{ kHz (Dipole)}, 210 \text{ kHz (Quadrupole)}$

The TCS Facility

The Internal Magnetic Probe

Signal Processing Internal Probe Data

- Probe can be aligned to measure B_x only, B_z only, or at 45° to measure both B_x and B_z.
- With the probe at 45° , so that both B_x and B_z are measured, it is assumed that:
 - The signal within ± 10 kHz of f_{RMF} is RMF signal and is thus in the x-direction.
 - The rest is assumed to be in the z-direction.
 - This is not always a good assumption.

Experimental Results: Current Drive Efficiency

• Quadrupole RMF drives current as efficiently as Dipole RMF at given I_{Ant} and similar effective ω_{rmf} (105 kHz vs. 260 kHz)

Internal Profiles

Quadrupole (ω =260 kHz)

Dipole (ω =105 kHz)

However, quadrupole RMF is more localized at the edge.

12

More prone to n=2

- As a result, FRCs formed by quadrupole RMF is more prone to n=2, possibly due to insufficient RMF present near field null where centrifugal force is strong (H.Y. Guo et al, this meeting).
- $f_{Rot} \sim 9$ kHz, similar to the dipole case.
- As in the dipole case, reducing ω aggravates rotational instabilities.

Stronger Internal Oscillations

- Quadrupole RMF also leads to strong internal oscillations in B_{θ} , especially at lower ω , i.e., 164 kHz (#14330).
- Note that oscillations appear as r_s approaches the wall, and persist until the end of the pulse.

Internal oscillations in B_{θ}

- Quadrupole RMF driven FRCs tend to develop low frequency internal oscillations in B_{θ} , especially at large x_{s} and low RMF frequency.
 - Large amplitude (comparable to RMF amplitude at $r = r_{wall}$.
 - Penetrate to r = 0.

Internal oscillation spectrum

- The B_{θ} spectrum has a dominant low frequency spike.
 - Large amplitude at small and large radius.
 - ~180° phase shift between inner and outer regions

Inner mode structure

- Antennas produce a rotating n=2 field, which is confined to the outer region of the FRC.
- An internal n=1 field spontaneously develops, and fully penetrates the FRC (all the way to the null).
 - We believe that it is an n=1 field because:
 - It co-rotates with the electrons and produces a single cycle in the rotation time of the electron fluid. (The rotation frequency of the electron fluid can be calculated using the internal magnetic profile and the interferometer.)
 - It fully penetrates to r = 0 (higher order modes must vanish at the axis of symmetry)
- What is the source of the low frequency inner field?
 - Tilt?

Numerical calculation with inner structure

- Numerical simulations using RMF2
 a 2D (r-θ) Hall MHD code.
- Simulations do not spontaneously produce inner rotating structure.
- Simulations with an initial n=1 internal structure, and a resistivity profile that is sharply peaked near the edge yield signals similar to the experimental observations.
- Inner current is driven by the rotating internal structure.
- A torque is applied to the structure through the continuous tearing and reconnection of field lines (as in "edge-driven mode").

Summary

- Quadrupole RMF is as efficient as dipole RMF for a given antenna current, and similar effective ω_{RMF}. (Quadrupole antennas must be driven at double the frequency.)
- Quadrupole RMF is more localized to the edge.
- FRCs driven by quadrupole RMF are more prone to the n=2 instability.
- FRCs driven by quadrupole RMF are prone to large internal oscillations.
- The above observations → narrow operating range for quiescent, stable FRCs.